Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.25.22269616

ABSTRACT

Hyperinflammation, coagulopathy and immune dysfunction are prominent in patients with severe infections. Extracellular chromatin clearance by plasma DNases suppresses such pathologies in mice but whether severe infection interferes with these pathways is unclear. Here, we show that patients with severe SARS-CoV-2 infection or microbial sepsis exhibit low extracellular DNA clearance capacity associated with the release of the DNase inhibitor actin. Unlike naked DNA degradation (DNase), neutrophil extracellular trap degradation (NETase) was insensitive to G-actin, indicating distinct underlying mechanisms. Functional proteomic profiling of severely ill SARS-CoV-2 patient plasma revealed that patients with high NETase and DNase activities exhibited 18-fold higher survival compared to patients with low activity proteomic profiles. Remarkably, low DNA clearance capacity was also prominent in healthy individuals with chronic inflammation, suggesting that pre-existing inflammatory conditions may increase the risk for mortality upon infection. Hence, functional proteomic profiling illustrates that non-redundant DNA clearance activities protect critically ill patients from mortality, uncovering protein combinations that can accurately predict mortality in critically ill patients.


Subject(s)
Pneumonia , Sepsis , Critical Illness , Blood Coagulation Disorders, Inherited , COVID-19 , Inflammation
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.17.460777

ABSTRACT

The high incidence of thrombotic events suggests a possible role of the contact system pathway in COVID-19 pathology. Here, we demonstrate altered levels of factor XII (FXII) and its activation products in two independent cohorts of critically ill COVID-19 patients in comparison to patients suffering from severe acute respiratory distress syndrome due to influenza virus (ARDS-influenza). Compatible with this data, we report rapid consumption of FXII in COVID-19, but not in ARDS-influenza, plasma. Interestingly, the kaolin clotting time was not prolonged in COVID-19 as compared to ARDS-influenza. Using confocal and electron microscopy, we show that increased FXII activation rate, in conjunction with elevated fibrinogen levels, triggers formation of fibrinolysis-resistant, compact clots with thin fibers and small pores in COVID-19. Accordingly, we observed clot lysis in 30% of COVID-19 patients and 84% of ARDS-influenza subjects. Analysis of lung tissue sections revealed wide-spread extra- and intra-vascular compact fibrin deposits in COVID-19. Together, our results indicate that elevated fibrinogen levels and increased FXII activation rate promote thrombosis and thrombolysis resistance via enhanced thrombus formation and stability in COVID-19.


Subject(s)
Thrombosis , COVID-19 , Respiratory Distress Syndrome
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.08.21260169

ABSTRACT

The systemic processes involved in the manifestation of life-threatening COVID-19 and in disease recovery are still incompletely understood, despite investigations focusing on the dysregulation of immune responses after SARS-CoV-2 infection. To define hallmarks of severe COVID-19 and disease recovery in convalescent patients, we combined analyses of immune cells and cytokine/chemokine networks with endothelial activation and injury. ICU patients displayed an altered immune signature with prolonged lymphopenia but expansion of granulocytes and plasmablasts along with activated and terminally differentiated T and NK cells and high levels of SARS-CoV-2-specific antibodies. Core signature of seven plasma proteins revealed a highly inflammatory microenvironment in addition to endothelial injury in severe COVID-19. Changes within this signature were associated with either disease progression or recovery. In summary, our data suggest that besides a strong inflammatory response, severe COVID-19 is driven by endothelial activation and barrier disruption, whereby recovery depends on the regeneration of the endothelial integrity.


Subject(s)
COVID-19 , Lymphopenia , Wounds and Injuries
4.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3661946

ABSTRACT

To investigate the role of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T-cell immunity and its relationship with antibody levels and pre-existing immunity against endemic human coronaviruses (huCoV) during disease and beyond, we analyzed patients with recovered (RC, n=178) and active Coronavirus Disease-2019 (COVID-19; AC, n=10) and healthy donors (HD, n=58). Overall, ACs had highest SARS-CoV-2 antibody levels against nucleocapsid (N) and spike (S) proteins but reduced antiviral T-cell immunity, whereas in RCs, antibody levels partially correlated with SARS-CoV-2-specific T-cell frequencies. Interestingly, humoral responses declined throughout convalescence, whereas T-cell immunity remained stable. RCs exhibited polyfunctional, mainly IFN-γ-secreting CD4 + effector memory T-cell responses. Humoral and cellular response towards huCoV strains in RCs with strong SARS-CoV-2 T-cell immunity implies a protective role of pre-existing immunity against huCoV. This study provides essential evidence-based data about stable protective T-cell immunity during disease and recovery which is essential to guide diagnosis and treatment of COVID-19.


Subject(s)
Coronavirus Infections , COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.11.20096263

ABSTRACT

Background: Elucidating the role of T cell responses in COVID-19 is of utmost importance to understand the clearance of SARS-CoV-2 infection. Methods: 90 individuals were enrolled in this study, 30 hospitalized COVID-19 patients and 60 age- and gender-matched healthy controls (HC). Using two comprehensive 11-color flow cytometric panels conforming to Good Laboratory Practice (GLP) and approved for clinical diagnostics, we longitudinally examined cell count differences in lymphocyte populations and T cell activation in COVID-19 patients. Findings: Absolute numbers of lymphocyte subsets were differentially decreased in COVID-19 patients according to clinical severity. In severe disease (SD) patients, all lymphocyte subsets were reduced, whilst in mild disease (MD) NK, NKT and {gamma}{delta} T cells were at the level of HC. Additionally, we provide evidence of T cell activation in MD but not SD, when compared to HC. Interestingly, follow up samples revealed a marked increase in effector T cells and memory subsets in convalescing but not in non-convalescing patients. Interpretation: Our data suggest that activation and expansion of innate and adaptive lymphocytes play a major role in COVID-19. Additionally, recovery is associated with formation of T cell memory as suggested by the missing formation of effector and central memory T cells in SD but not in MD. Our data imply that the presence of SARS-CoV-2 responsive T cells contributes to convalescence in MD. Thus, understanding the T cell-response in the context of clinical severity might serve as foundation to overcome the lack of effective anti-viral immune response in severely affected COVID-19 patients and can offer prognostic value as biomarker for disease outcome and control.


Subject(s)
COVID-19 , von Willebrand Disease, Type 3 , Brain Concussion , Disruptive, Impulse Control, and Conduct Disorders
SELECTION OF CITATIONS
SEARCH DETAIL